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Abstract:

We are interested in dimensionally parametrized determinant formulas for specially

structured matrices. Applications of this question occur for example in the study of arbitrary
dimensional geometric predicates. We will investigate determinant formulas for a number of
important matrix classes and discuss the implementation of Maple packages that automatically
derive the determinant formula for specified matrices of these classes.

Introduction

Determinants have a long history in mathematics and
arise in numerous applications. Consequently, they have
been researched extensively which has yielded efficient
algorithms for determinant computation. Here we are
not interested in the value of a determinant of fixed in-
teger order but rather in the determinant formula of a
specially structured matrix of symbolic dimension n. It
is assumed that a certain simple structure of a matrix
yields a corresponding special structure of its determi-
nant formula. This problem has been investigated very
early; Muir’s “Treatise on the Theory of Determinants”[4]
contains a large number of early papers related to this
subject motivated by applications in algebra and analy-
sis or simply by the interesting structure of the matrix
coefficients. Nowadays, many of these results tend to be
forgotten or are buried in induction exercises in linear
algebra books. Applications of dimensionally parame-
trized determinant formulas occur for example in the
study of arbitrary dimensional geometric predicates in
determinant form: If we want to prove a general state-
ment for a special configuration then we need the deter-
minant formula of the predicate.

In the following sections we will investigate determinant
formulas for three important matrix classes, the Frame-
forms, the Alternants and the Continuants. Moreover,
we will discuss the implementation of Maple packages
that allow a specification of matrices of these classes
and automatically derive its determinant formula.

Frameforms

We will first examine a matrix class where only the bor-
dering rows and columns as well as the main diagonal
may contain nonzero entries. Matrices of this class will
be called frameforms.

*Universitdt des Saarlandes, FB 14 Informatik, 66041 Saar-
briicken, email: mark@cs.uni-sb.de

TParts of this work have been supported by the German Re-
search Foundation (DFG)

Motivation

Geometric predicates such as the sidedness test — do d+1
points of IR¢ lie on a common hyperplane ? — or the in-
sphere test — do d + 2 points of IR lie on a common
sphere ? — may be written in determinant form [2].

Consider the following example in [2]: We have a con-
figuration of d + 2 points in R¢, two distinct points
5= (s,...,s8)and t = (¢t,... ,t) from the main diagonal
and one point t; = t; - e; from each axis.

Figure 1: Configuration in R®

This point configuration results in the following in-sphere
determinant:

1 ¢t t --- t dt?

1 ¢t 0 0 &
g_|1 0 t Dt

s N

1 0 -~ 0 tg ¢t}

1 s s - s ds? a2

We are looking for an easy dimensionally parametrized
determinant formula such that we can show that the de-
terminant does not vanish for given ranges of the entries
which would establish that the d 4+ 2 chosen points are
not cospherical. The determinant S is in frameform and
we will show in the sequel how to establish its determi-
nant formula.
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Determinant Formulas for Frameform Ma-
trices

We will show that it is possible to derive the most gen-
eral form of frameform matrices from simpler forms.

NN

arrow form R-form

DB-form

Figure 2: Nonzero shapes of different frameforms

We will proceede as follows: First we will give a di-
mensionally parametrized determinant formula for ar-
row forms which will allow us a straightforward gener-
alization to R-forms. The most general form, the DB-
form, will be obtained by a combination of R-forms.

Arrow forms

The only nonzero elements of an arrow form determinant
are located in the first row, the first column or the main
diagonal. It will be denoted as ARROW,(r1,¢1,d):

d(1) r1(2) r(3) r1(n)
c1(2) d(2) 0 o 0
C1 (3) 0

: dn—-1) 0
ca(n) 0 0 d(n) |,

Expansion of the first row and clever restructuring es-
tablishes the following determinant formula:

n n

ARROW,(r1,¢1,d) = H d(l) - ZTl(l)Cl(l) f[ d(k).

=1 =2 k
k

R-forms

In comparison to arrow forms, the last column may also
contain nonzero elements in R-forms.

a(l)  r(2) rin—1)  ¢n(l)
a2 42 0 - 0 cn(2)
) 0 ) i ) :
: : " . 0 :
an-=-1) 0 -+ 0 dn-1) cp(n-1)
c1(n) 0 - 0 0 cn(n)

An R-form will be denoted as RFORM,,(r1, ¢1, ¢y, d).-
Expanding the last row it may be seen that an R-form

determinant formula can be obtained from two arrow
forms of lower order.

RFORM,,(r1,¢1,¢Cn,d) = ¢n(n)ARROW, _1(r1,c¢1,d)

—  c1(n)ARROW,, 1 (71,Cn,d)

where 71, Cp, d are new generating functions obtained by
swapping column 1 and n—1 in the corresponding minor
R,1 to get arrow form.

DB-forms

Now we turn to the most general case of frameforms,
i.e. allowing nonzero elements in all bordering rows and
columns and the main diagonal. A general DB-form will
be denoted as DBFORM,,(r1, 7y, €1, Cp):

c1(1) ri(2) -+ -+ rin—1) cn(1)
a2 d2) 0 - 0 cn(2)
. 0 . . .
: : . . 0 :
an-1) 0 -+ 0 dn—-1) cup(n—-1)
c1(n) rn(2) - rn(n—1) cn(n)

Expanding the last row of such a general DB-determinant,
we see after some restructuring that it is possible to ex-
press its formula as a combination of R-forms.

DBFORM,,(11,7y, €1, ¢n) = RFORM, (1, ¢1, C2,d)

n—1
— > ru()RFORM,, 1 (71,1, Cn, d)
=2

where 71,21, p, d are new generating functions obtained
by swapping row [ down to the bottom in the corre-
sponding minor DB, to get R-form.

Generalizations

It remains to note that it is easy to transform similar
shapes like arrows pointing to the bottom right corner
into the discussed standard shapes.

So far we also required that the nonzero elements should
reside in bordering rows and columns. However, it is
straightforward to show that we may drop this assump-
tion since it is possible to obtain this bordering form via
pairwise swappings. Refer to [5] for details.

MapleTech



A Maple package for frameform determi-
nants

We have implemented a Maple package that enables
the user to specify a general frameform determinant
and automatically computes the corresponding determi-
nant formula using the preceding results. The package
works as follows: First, the specification is parsed and
tested for correctness, then a transformation into stan-
dard form is performed and finally the corresponding
formula is applied after trying out simplifications. Fea-
tures are options that enable the display of the specified
dimensionally parametrized determinant (using “o”s as
dots for illustration) and that check the computed for-
mula via substitution of integer orders and comparison
with the normally computed determinant. Details can
be obtained from [5] or the online help pages.

Specification

The specification of a frameform determinant is designed
to be a list of row, column or diagonal specifications:

specDet=[ specL_1, ... , specL_k ]
In this list we have lists of tuples of the form
specL=[ typelpos], fctn_specL ]

specifying a certain determinant chunk. Here type may
be row, col, diag and pos can be between 1 and n for
row and col or O for diag.

fctn_specLis the piecewise specification of the elements
of the current matrix chunk and has the form

[[intv_1, fctn_1(i)],...,[intv_k,fctn_k(i)]].
A restriction is that piecewise specifications are only
possible in the ranges [1..p1] and [n-p2..n]. If no
piecewise specification is needed then fctn_specL may
be simply a function f possibly dependent on i.

Other shortcuts like omitting double specification of over-
lapping corner elements are also possible (refer to the
online help pages or [5] for details).

Examples
> with(FRAMEFQRMS) :

> Arrow(n,[ [row[1],al, [col[1],[2..n,bl],
> [diag, [2..n,1]] ],print,check);

Matrix :

vV V V VvV

a a a o o o0 a
b 1.0 0 0 0 O
b 01 0 0 0 O
o 0 0 o 0 0 O
o 0 0 0 o 0 O
o 0 0 0 0 o O
b 0 0 00O 01

Determinant :

n >= 2
a—ban+ba

DBform(d+2,[ [coll1],1], [colld+2],
[[1,d*t~2],[2..d4+1,t[i-1]1~2], [d+2,d*s~2]]],
[diag, [2..d+1,t[i-1]111, [row[1],[2..d+1,%1],
[rowld+2],[2..d+1,s]] 1,print,check);

Matriz :

(1 ¢ t 00 0 t df]
1 &4 0 0 0 0 0 ¢?
1 0 ¢t 0 0 0 0 ¢t?
o 0 0 o 00 0 o
o 0 0 0 o 0 0 o
o 0 0 0 0 o 0 o
1 0 0 0 0 0 tg t4°

|1 s s 0o o0 o s ds? |

Determinant :

formula valid for , d >=2

;o d d
1--) (T tiyds® =s (I t) (3t

=1 ] =1 l_:l ; 1
— (dt* —dst) ((H t)—s(J[t) D U)
=1 =1 =1 "

Vol. 2, No.?, 1998



The preceding formula which is the result of our in-
sphere example looks rather nasty. If we take a closer
look at it, we see that it may be cleaned up a little bit:
Factoring out the nonzero term (H;i:1 t1)/(t—s) we get
the much nicer formula

d d 1
l:zltl —dt+dstlzzla.

Since Maple’s simplify command does not always pro-
duce results which are simplified in our sense, it is sug-
gested that one simplifies the resulting formulas by hand.

Alternants

Let us turn to another important determinant class, the
alternants. An alternant of order n is a determinant
where the entries of the first row are generated by func-
tions fi,..., fn in one variable z1, the entries of the
second row by the same functions in another variable
z3 and so on. We assume that the column generating
functions are multivariate polynomials over a ring.

fi(z1)  fa(21) fn(z1)
fi(z2)  fa(22) fn(z2)
fi(@a) fo@a) o falza)

The most well known type of an alternant is the Van-
dermonde determinant, generated by the functions xfl
fori,j=1,...,n.

—1
1 x R
1 2z T
V= :
2 n—1
1 @n1 @)y Tp_y
1z, x2 gn—t

A generally known fact is that the formula of the Van-
dermonde determinant is

V= H (Z‘j —.’L‘i)

1<i<j<n

which is the difference product of the variables.

Indeed it is straightforward to show that this difference
product appears as a factor of every alternant and that
its cofactor is a symmetric function in the variables.
How can we compute this cofactor ?

We will present a theorem of [4] that determines the co-
factor as a combination of elementary symmetric func-
tions. The elementary symmetric function o, is the sum
of all monomials that are products of r distinct variables:

op = > Tiy - Ti,

1<i1 << <n

In particular 09 = 1, 0y = 21 +--- + 2, and o, =
Z1%o -+ - T,. The elementary symmetric functions form
a basis of the symmetric polynomials [1].

Theorem

Let fj(z:) = aoj + a1jx; + agjz? + - + arjz be the
column generating functions with » > n — 1 and let
Sk = (—l)ka k-

The cofactor of the difference product of the generated
alternant of order n is

ao1 ai1 tr Gpl Gpy1,1 0 Gl
ap2 a12 v Gp2 Gp41,2 0 A2
ano Gpl e Qpn  OGp4in Qrp
Sn Sp_1 - So 0 . 0
0
: -, -, . -, 0
0 ... 0 Sn Sn_1 - S 1
Proof.  See [4] or [5].

At first it seems that we didn’t gain anything since we
only traded an order n determinant for an order r + 1
determinant involving coeflicients and elementary sym-
metric functions. However, if we assume r = n + d with
d € IN and only consider monomials as column generat-
ing functions, it becomes obvious that only one entry in
each of the first n rows is nonzero. This allows easy ex-
pansion of the first n rows yielding a minor of order d+1
involving elementary symmetric functions. This minor
is of integer order and can be computed by standard
minor expansion.

Example

Consider the following alternant:

1 mi mé 7
n

1 T5 T3 Ty

A= : :
2 3 n

1 mn2—1 $n3—1 wn—l
n

1 x;, x, Ty
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The theorem gives us a cofactor determinant

1 0 o --- 0

0 0 1

: : . .0 = (_1)n_lsn—1 = 0On-1
0 0 0 1
Spn Sp-1 -0 St So

and hence the determinant formula

H (xj — ).

1<i<j<n

A=o0,1

Using the multilinearity of the determinant we can also
handle the case of polynomial generating functions pro-
vided that there are only a fixed integer number of them.
[5] also discusses some special cases where simple poly-
nomial functions are allowed.

Elementary symmetric polynomials are not the only ba-
sis for symmetric polynomials, see [4] and [5] for a dis-
cussion of Jacobi’s cofactor representation by complete
symmetric functions for monomial alternants.

A Maple package for Alternants

We have implemented the discussed approach such that
it is possible to obtain the dimensionally parametrized
formula of specified alternants meeting the restrictions
above. After parsing the specification, the determinant
is broken into a combination of monomial alternants
whose formulas are determined by computing the co-
factor determinant. Since only a fixed integer number
of columns may be piecewisely defined, we may simulate
the minor expansion of the dimensionally parametrized
cofactor determinant. Display and checking facilities are
provided as in the frameforms package.

Specification

A piecewise specification is possible according to the
frameforms package. Features are discussed in [5] and
the online help pages of the package.

Examples
> with (ALTERNANT) :

> Alternant(n,x,[ [1..n-1,x[i]1~(j-1)]1,
> [n..n,2*x[i]1~j-x[1]1~(j+1)] ],esf,print);

Matrix :

1 z o o z? 23" — g, (M)

1 2o o0 o 1z 235" — gyl

1 23 o o 302 233" — gz(ntD)

o o o0 o o o

o o o0 o o o

1 Zp1 0 0 Tp 1™ 2z, " —g, Ot
1 z, o o z,(m2 2x," — z,m D

Determinant :

formula valid for ;1 <n

(_8(17 n, x)z + S(07 n, .73) S(27 n, .TC) - 28(17 n, .CL‘))
DP(n, x, x;)

Here, S(k,n, ) denotes (—1)%oy(z1,... ,2,) and
DP(n,,z;) the difference product [, ;;<,(z; — =:).

Continuants and Hessenberg Deter-
minants

In this section we will discuss determinant formulas of
tridiagonal matrices and Hessenberg matrices. We will
show a straightforward recurrence formula for tridiago-
nal determinants, discuss simplifications and try to ex-
tend the results on Hessenberg determinants.

Continuants

The determinant of a tridiagonal matrix is called a con-
tinuant. Continuants are intimately connected to con-
tinued fractions, from which they get their name (see
[3]). We will denote the determinant

do(1)  di(1) 0 0
d_1(1) do(2) di(2) '
0 d 1(2) do(3) RS 0
: di(n—1)
0 .- 0 di(n—-1) do(n)

with main diagonal generating function dy and side diag-
onal generating functions d_; and d; by Cy,(d—1,do, d1).

Expanding the last column we obtain a recurrence for-
mula for a general continuant:

Cn(dflad(]:dl) = dO(n)Cnfl (dfladO;dl)
—d_1(n—1)di(n —1)Cp_2(d_1,do,d1)
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with base cases C1(d_1,do,d;) = do(1) and Cy() = 1.

Let us take a look at the terms of a general continuant.
One term is obviously do(1)do(2) - --dg(n). The other
terms can be obtained from it by replacing any pair
do(r)do(r +1) by —d_1(r)dy(r) for 1 <r <m — 1. This
follows since we need one row or column exchange to get
d_1(r) and d;(r) in the position of do(r) and do(r + 1).
Tteration of this process eventually derives all continuant
terms.

This allows the conclusions that
Cn(d-1,do,d1) = Cy(1,do,d_1d1) (1)

and if the main diagonal is 0 :

Cn(d—hoadl) =

(—1)"/2 T2 d 1 (2i — 1)dy (2i — 1) n even,
0 n odd.

If the diagonal generating functions of the continuant
are constant, say dyp = a, di = b and d_; = ¢, we obtain
the general formula

13]
Cpn(e,a,b) = Z(—l)k ( n ; k ) a"2kpk ek

k=0

We will close the section with a special form of contin-
uants: Consider a continuant where each main diagonal
element, except the first and the last one, is the sum of
the side diagonal elements of the same row:

ai + by b1 0 0
a2 az+by by
0 0
: Gn-1 Gpn-1+bp—1 bn_1
0 0 an an + by

Induction establishes the following determinant formula

C = Z ayas - -- ai_lbi+1bi+2 e bn (2)
i=1

Example

Consider the continuant Cp(z,1 + 22, 2):

1+ 22 T 0 0
T 1422 =z
0 0
: . A T
0 0 T 1+ z2

Using (1) we get Cp(z,1 + 22,7) = Cn(1,1 + 22,2?),
hence we may apply (2) and get the formula

Cn(z,1+2%,2) =142+ 2%+ + 22"

Hessenberg Determinants

We will define a general Hessenberg determinant with

diagonal generating functions d_1,dp,ds,... ,dp—1
do(1)  di(1) dp—2(1)  dn-1(1)
d-1(1) do(2) di(2) n—2(2)
0 d-1(1)
di(n—1)
0 - 0 doi(n—1)  do(n)

by Hn(d_l,do,dl, .

Again it is possible to derive a recurrence formula for
the determinant (see [5] for details) and we obtain

,dn_1) or briefly H(n).

Jﬂngj—WQm—nHm—i—nﬁﬁﬂm—ﬁ
i=0 j=1

with base cases H(1) = do(1), H(0) =1 and H(—s) =0
for s > 0.

In general this recurrence formula allows no simple closed
form but let us take a look at a few special cases: For
the sake of simplicity, we assume the diagonal generating
functions to be constants.

Consider Hessenberg determinants of the form
H(d_l, do,0,...,0,dp—c,. .. adn—l) with ¢ > 0.
We obtain the formula

H(n) =dg + > k(=1)""*d§ " d"y *dp_s.
k=1

See the next subsection for an example.

Above, we discussed the effect of a zero main diagonal
on the continuant. We will try to derive a similar result
for Hessenberg determinants of the form

Hp(d—1,0,...,0,dy,0,...,0,dn_c, ... dn1)

for ¢,p € IN.

First we assume ¢ = 0 and hence examine the form

H,(d_1,0,...,0,d,,0,...,0)
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We observe that the determinant has to vanish if n #

(p+1)-s for some multiple s. Otherwise, we can simply
expand H(n) = (=1)Pd, [[}_, d_1H(n —p — 1) and get

H(n)= (-1 [ d» [] ¢+
=0 k=1
The case ¢ > 0 is more tricky, however. It may be
observed that H(0) = 1, H1) = --- = H(p) = 0

and H(p + 1) = d,[]4_,d_1. Examining the diag-
onal generating functions d,,_.,... ,d,_1 of the upper

right corner of the determinant, we notice that only

dn—1,dn_1_(py1), -+ 1dn_1—a(p+1) With a = [pilJ con-

tribute to the determinant formula since the others re-
sult in a recursive call of one of H(1),... ,H(p). It is
shown in [5] that this yields the following determinant
formula:

_f (F)PEE 4K, ifn=sp+1)
H(n) = { K, otherwise

with
a

K = Z(k + 1) (=1 Fdy, gy didt TR
k=0

A Maple package for Continuants and Hes-
senberg Determinants

We implemented the preceding results and will briefly
discuss the designed Maple package. After parsing the
specification it is tried to identify one of the special cases
and return the appropriate formulas, otherwise simply
the corresponding recurrence. Display and checking fa-
cilities are provided as in the frameforms package.

Specification

Continuants are specified by the triple dg,d;,d_10f the
diagonal generating functions.

The diagonal generating functions of Hessenberg deter-
minants have to be specified in a list of tuples
[ [pos, function], ... ].

Refer to the online help pages or [5] for features con-
cerning the continuants.

Examples
> with (HESSENBERGandCONTINUANT) :

> Continuant(n,x+y,x,y,print,check);
Matrix :

o o 0 0 o
o o o 0 0
o 0 o o o 0
o 0 0 o o z

r+y

Determinant :

_y(n+1) + :L'(n+1)

—y+z

> HessenbergDet(n,[ [-1,b],[0,al,[n-3,x],
> [n-2,y]1, [n-1,2z] ],print,check);

Matriz :

[ a 00 o o 0 z y = ]
b a 00 00 0 z v
0 ba 00O0O0TO0 =z
0 0b o 0O0O0O0O0OO
o 00 o o 00 0 o
o 000 o o 00 o
000 0O0UDbD a 030
0000 O0OUDBD a6 O

i 000 o o 0O0 b a |

Determinant :

formula valid for : ,5<n
a” +3(=1)"3) g g2 p(n3)

+2 (=)D ya b=V 4 (=1)(n7D Hpnt

Conclusion

We have derived dimensionally parametrized determi-
nant formulas for three determinant classes, the frame-
forms, the alternants and the continuants and Hessen-
berg determinants. We described Maple packages that
enabled computing the formula of specified determinants
of those classes.
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The discussed determinant classes and their implemen-
tation are excerpts of the author’s M.Sc thesis. The
Maple packages including online documentation and the
thesis offering a more detailed treatise of the topic can
be downloaded from the WWW page:

http://www-tcs.cs.uni-sb.de/mark/det.html

The book of Metzler [4] is also highly recommended.

References

[1] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties
and Algorithms. Springer, second edition, 1996.

[2] J. Erickson and R. Seidel. Better lower bounds on
detecting affine and spherical degeneracies. Discrete
Computational Geometry, 13:41-57, 1995.

[3] R. Graham, D. Knuth, and O. Patashnik. Concrete
Mathematics. Addison—Wesley, 1992.

[4] W. Metzler. A Treatise on the Theory of Determi-
nants by Thomas Muir. Dover reprint, 1960.

[5] M. Ziegelmann. Computing dimensionally para-
metrized determinant formulas. Master’s thesis,
Universitit des Saarlandes, 1997. available at
http://www-tcs.cs.uni-sb.de/mark/det.html.

Biography

Mark Ziegelmann studied computer science at the
universities of Tiibingen, Edinburgh and Saarbriicken.
He obtained a M.Sc (Diplom) from the Universitat des
Saarlandes in 1997. Currently, he is a PhD candidate
in computer science with a scholarship of the German
Science Foundation (DFG). His main research interests
are Computational Geometry and Computer Algebra.

MapleTech



